Epileptic seizure focus detection from interictal electroencephalogram: a survey

Author:

Islam Md. Rabiul,Zhao Xuyang,Miao Yao,Sugano Hidenori,Tanaka ToshihisaORCID

Abstract

AbstractElectroencephalogram (EEG) is one of most effective clinical diagnosis modalities for the localization of epileptic focus. Most current AI solutions use this modality to analyze the EEG signals in an automated manner to identify the epileptic seizure focus. To develop AI system for identifying the epileptic focus, there are many recently-published AI solutions based on biomarkers or statistic features that utilize interictal EEGs. In this review, we survey these solutions and find that they can be divided into three main categories: (i) those that use of biomarkers in EEG signals, including high-frequency oscillation, phase-amplitude coupling, and interictal epileptiform discharges, (ii) others that utilize feature-extraction methods, and (iii) solutions based upon neural networks (an end-to-end approach). We provide a detailed description of seizure focus with clinical diagnosis methods, a summary of the public datasets that seek to reduce the research gap in epilepsy, recent novel performance evaluation criteria used to evaluate the AI systems, and guidelines on when and how to use them. This review also suggests a number of future research challenges that must be overcome in order to design more efficient computer-aided solutions to epilepsy focus detection.

Funder

Core Research for Evolutional Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Cognitive Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced Epileptic Seizure Identification using Sparse ELM-ABO Fusion with Feature Reduction and Multi-class Classification;Journal of Intelligent & Fuzzy Systems;2024-01-10

2. Privacy-preserving multi-source semi-supervised domain adaptation for seizure prediction;Cognitive Neurodynamics;2023-11-22

3. Physical approach of a neuron model with memristive membranes;Chaos: An Interdisciplinary Journal of Nonlinear Science;2023-11-01

4. Identification of Seizure Onset Zone from Intracranial EEG Using Source Selection-Based Domain Adaptation;2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2023-07-24

5. Identification of TLE Focus from EEG Signals by Using Deep Learning Approach;Diagnostics;2023-07-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3