Abstract
Abstract
Key message
We propose a silvicultural-ecological, participatory-based, conceptual framework to optimize the socioeconomic-ecological services provided by dryland afforestation, i.e. addressing the limited resources in arid areas while minimizing the harm to the environment. The framework applies the following criteria to select multifunctional tree species: (a) drought resistance, (b) minimal disruption of ecosystem integrity, and (c) maximization of ecosystem services, including supporting community livelihoods.
Context
Dryland afforestation projects frequently aim to combine multiple ecological and economic benefits. Nevertheless, plant species for such projects are selected mainly to withstand aridity, while other important characteristics are neglected. This approach has resulted in planted forests that are drought-resistant, yet harm the natural ecosystem and provide inadequate ecosystem services for humans.
Aims
We suggest a comprehensive framework for species selection for dryland afforestation that would increase, rather than disrupt, ecological and socio-economic services.
Methods
To formulate a synthesis, we review and analyze past and current afforestation policies and the socio-ecological crises ensuing from them.
Results
To increase afforestation services and to support human-community needs, both native and non-native woody species should be considered. The framework suggests experimental testing of candidate species for their compliance with the suggested species selection criteria. Furthermore, regional stakeholders are involved in evaluating, ranking, and prioritizing the candidate species according to experimental results and stakeholders’ values and needs. We exemplify our approach by describing our ongoing research project, aimed to evaluate several native and exotic Ziziphus species in the Middle East region.
Conclusion
The employment of our proposed framework forms a novel community of native and non-native woody species. We discuss the ecological context of this proposal.
Publisher
Springer Science and Business Media LLC
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献