Estimation of breast height diameter and trunk curvature with linear and single-photon LiDARs

Author:

Ahola Jari M.,Heikkilä TapioORCID,Raitila Jyrki,Sipola Teemu,Tenhunen Jussi

Abstract

Abstract Key message New technologies can take us towards real precision forestry: the terrestrial single-photon avalanche diode (SPAD) light detection and ranging (LiDAR) has a great potential to outperform conventional linear mode LiDARs in measuring tree parameters at the stand level. Context Precision forestry together with new sensor technologies implies Digital Forest Inventories for estimation of volume and quality of trees in a stand. Aims This study compared commercial LiDAR, new prototype SPAD LiDAR, and manual methods for measuring tree quality attributes, i.e., diameter at breast height (DBH) and trunk curvature in the forest stand. Methods We measured 7 Scots pine trees (Pinus sylvestris) with commercial LiDAR (Zeb Horizon by GeoSLAM), prototype SPAD LiDAR, and manual devices. We compared manual measurements to the DBH and curvature values estimated based on LiDAR data. We also scanned a densely branched Picea abies to compare penetrability of the LiDARs and detectability of the obstructed trunk. Results The DBH values deviated 1–3 cm correlating to the specified accuracies of the employed devices, showing close to acceptable results. The curvature values deviated 1–6 cm implying distorted range measurements from the top part of the trunks and inaccurate manual measurement method, leaving space for improvement. The most important finding was that the SPAD LiDAR outperformed conventional LiDAR in detecting tree stem of the densely branched spruce. Conclusion These results represent preliminary but clear evidence that LiDAR technologies are already close to acceptable level in DBH measurements, but not yet satisfactory for curvature measurements. In addition, terrestrial SPAD LiDAR has a great potential to outperform conventional LiDARs in forest measurements of densely branched trees.

Funder

European Observation Network for Territorial Development and Cohesion

Technical Research Centre of Finland

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Forestry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3