Effects of errors in basal area and mean diameter on the optimality of forest management prescriptions

Author:

Ruotsalainen RoopeORCID,Pukkala Timo,Kangas Annika,Packalen Petteri

Abstract

Abstract • Key message Errors in forest stand attributes can lead to sub-optimal management prescriptions concerning the set management objectives. When the objective is net present value, errors in mean diameter result in greater losses than similar errors in basal area, and underestimation greater losses than overestimation. • Context Errors in forest inventory data can cause inoptimality losses in the objectives set to forest management. Losses occur when the forest is treated with management prescriptions that are optimal for erroneous data but not for correct data. • Aims We evaluate the effect of varying levels of errors in basal area and mean diameter on the inoptimality losses. • Methods Errors from 20% of overestimation to 20% of underestimation were simulated in basal area and mean diameter. For each stand, the management prescription that maximized the net present value was selected with and without errors. The inoptimality losses were calculated for different error levels. • Results The tested error levels resulted in inoptimality losses of 0.11–3.01%. Errors in mean diameter increased inoptimality losses more than similar relative errors in basal area. Simultaneous underestimation of basal area and mean diameter led to greater inoptimality losses than simultaneous overestimation of these attributes. • Conclusion If the forest is considered as an investment, using inventory data where basal area and mean diameter are underestimated causes greater losses compared with data where these attributes are overestimated. Errors in mean diameter are more important than similar errors in the basal area. Large errors in basal area and mean diameter should be avoided especially in stands where the basal area is high.

Funder

University of Eastern Finland (UEF) including Kuopio University Hospital

Publisher

Springer Science and Business Media LLC

Subject

Ecology,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3