Abstract
Abstract
• Key message
The increase in climate variability is likely to generate an increased occurrence of both frost-induced and drought-induced damages on perennial plants. We examined how these stress factors can potentially interact and would subsequently affect the vulnerability to each other. Furthermore, we discussed how this vulnerability could be modulated by shifts in the annual phenological cycle.
Context
The edges of plant distribution are strongly affected by abiotic constraints: heat waves and drought at low latitude and elevation, cold and frost at high latitude and elevation. The increase in climate variability will enhance the probability of extreme events and thus the potential interaction of stress factors. The initial exposure to a first constraint may affect the vulnerability to a subsequent one.
Aims
Although three integrative physiological processes, namely water balance, carbon metabolism and the timing of phenological stages, have largely been studied in the response of trees to a single constraint, their interaction has rarely been investigated. How would the interaction of frost and drought constraints modulate the vulnerability to a subsequent constraint and how vulnerability to a given constraint and phenology interact?
Conclusion
We suggest that the interaction between frost and drought constraints should in the short-term influence water balance and, in the longer term, carbon metabolism, both consequently affecting further vulnerability. However, this vulnerability can be modulated by shifts in the annual phenological cycle. Significant gaps of knowledge are reported in a mechanistic framework. This framework can help to improve the current process-based models integrating the life history of the individual plant.
Funder
Agence Nationale de la Recherche
Région Auvergne-Rhône-Alpes
Publisher
Springer Science and Business Media LLC
Reference183 articles.
1. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manage 259:660–684
2. Améglio T, Ewers FW, Cochard H, Martignac M, Vandame M, Bodet C, Cruiziat P (2001) Winter stem xylem pressure in walnut trees: effects of carbohydrates, cooling and freezing. Tree Physiol 21:387–394
3. Améglio T, Bodet C, Lacointe A, Cochard H (2002) Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiol 22:1211–1220
4. Améglio T, Decourteix M, Alves G et al (2004) Temperature effects on xylem sap osmolarity in walnut trees: evidence for a vitalistic model of winter embolism repair. Tree Physiol 24:785–793
5. Anderegg WR, Plavcová L, Anderegg LD, Hacke UG, Berry JA, Field CB (2013) Drought’s legacy: multiyear hydraulic deterioration underlies widespread aspen forest die-off and portends increased future risk. Glob Change Biol 19:11881196
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献