Study on the Microstructure of a Photonic Crystal Fiber using the Elasto-Optical Effect

Author:

Sánchez AlejandroORCID,Cortés AlejandroORCID,Porta Andrés V.ORCID,Orozco SusanaORCID

Abstract

AbstractPhotonic crystal fibers are characterized by their periodic structure with dimensions in the nanometer to micrometer range, which gives them the potential to be applied in various technical areas. In this work, we study the microstructure of a hexagonal photonic crystal fiber through a macroscopic localized compression test and measurements of relative intensity changes of a transmitted signal in the photonic crystal fiber. Our experimental study was carried out by controlling the orientation of the localized compression respective to the cross-section microstructure of the photonic crystal fiber. To complete the study, we developed a theoretical model based on the elasto-optic effect, and the numerical solution obtained with the model was compared with the experimental results. With both experimental and theoretical results, we obtained a causal correlation between the loss of relative intensity of the signal traveling through the hexagonal photonic crystal fiber and the orientation (respective to the fiber plane) of a localized compression on photonic crystal fiber. In this way, we can explore the cross-section microstructure of a photonic crystal fiber and its orientation in a device with a macroscopic compression test.

Publisher

Springer Science and Business Media LLC

Subject

Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3