Temperature and Particle-size Effects on the Formation of Silica Gels from Silica Sols

Author:

Sögaard Christian,Hagström Magnus,Abbas Zareen

Abstract

AbstractSilica nanoparticles (silica sols) based gels have increasingly been used as alternative grouting material for sealing the small fractures in the tunnel walls. Gelling of silica nanoparticles at room temperature has been investigated thoroughly but gelling at different temperatures scarcely investigated. At the same time temperature is one of major factor which can affect the long-term stability of grouted silica. In this work we have investigated the gelling of three different types of silica sols (Levasil CS40-213, Levasil CS40-222, and Levasil CS30-236) having different particle sizes, in 0.28 M NaCl at 10, 20 and 30 °C. Aggregation process, starting from the addition of salt to the gelling point, was monitored by measuring the time dependent particle size distribution. Electrospray scanning mobility particle sizer (ES-SMPS) was used to measure the aggregating. These measurements were complemented by rheological measurements in order to get a relationship between changes in aggregate structure and in the viscosity of silica suspension. Data from the temperature dependent gel time measurements were used to calculate the activation energy. At room temperature, silica sols with smallest average particle size showed the shortest gel times whereas the sols with the largest particle size showed the longest gel time. However, at increasing temperature shorter gel times were seen for all the sols. Temperature dependent rheological measurements showed similar trends in viscosity changes as seen for gel times i.e., increased temperature leads to quicker increase in the viscosity and a sharp increase in viscosity near the gelling point. Our calculations of fractal dimensions showed that in the gel network there are still many free particles which continuously incorporated into the gel network. Apparent activation energies calculated for CS40-213, CS40-222, CS30-236 were 13.40, 23.36 and 41.45 kJ/mol, respectively. These values are lower than values reported for silica in the literature. Moreover, temperature dependent zeta potential measurements show that zeta potential get less negative as temperature increase. The above mentioned measurements are at odd what has been reported in literature but we have provided plausible explanation of these results.

Funder

Svenska Forskningsrådet Formas

Publisher

Springer Science and Business Media LLC

Subject

Electronic, Optical and Magnetic Materials

Reference44 articles.

1. Bergna HE (1994) ACS publications. Colloid chemistry of silica: an overview, pp 43

2. Koepenick M (2009) Papermaking on a nano scale. Pulp Pap-Canada 110(6):14–16

3. Tsuji M et al (2017) Post-grouting experiences for reducing groundwater inflow at 500 m depth of the mizunami underground research laboratory, Japan. Procedia Eng 191:543–550

4. Funehag J (2004) Sealing of narrow fractures in hard rock-a case Study in Hallandsås, Sweden. Tunn Undergr Space Technol 19(4–5):1–8

5. Funehag J (2012) Guide to grouting with silica sol: for sealing in hard rock. Stiftelsen Bergteknisk forskning

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3