1. Daniel, B.: Isometric immersions into 3-dimensional homogeneous manifolds. Comment. Math. Helv., 82, 87–131 (2007)
2. Dillen, F., Fastenakels, J., Van der Veken, J., et al.: Constant angle surfaces in % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39ga % iyaacqWFsc-udaahaaWcbeqaaGqaaiab+jdaYaaaaaa!47E8! $$ \mathbb{S}^2 $$ × ℝ. Monatsh. Math., 152, 89–96 (2007)
3. Dillen, F., Munteanu, M. I.: Constant angle surfaces in ℍ2 × ℝ. Bull. Braz. Math. Soc. N. S., 40, 85–97 (2009)
4. Dillen, F., Munteanu, M. I.: Surfaces in ℍ+ × ℝ. In: Pure and Applied Differential Geometry — PADGE 2007 (F. Dillen and I. Van de Woestyne eds.), Shaker Verlag, Aachen, 2007, 185–193
5. Munteanu, M. I., Nistor, A. I.: A new approach on constant angle surfaces in % MathType!MTEF!2!1!+- % feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC % vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz % ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb % L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe % pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam % aaeaqbaaGcbaWefv3ySLgznfgDOjdarCqr1ngBPrginfgDObcv39ga % iyaacqWFecFrdaahaaWcbeqaaGqaaiab+ndaZaaaaaa!47CE! $$ \mathbb{E}^3 $$ . Turkish J. Math., 33, 168–178 (2009)