Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,General Mathematics
Reference24 articles.
1. Algaba, A., Merino, M., Rodrguez-Luis, A. J.: Homoclinic connections near a Belykov point in Chua’s equation. Int. J. Bifur. Chaos, 15, 1239–1252 (2005)
2. Algaba, A., Merino, M., Rodrguez-Luis, A. J.: Analysis of a Belykov homoclinic connection with Z
2-symmetry. Nonlinear Dynam., 69, 519–529 (2012)
3. Belykov, L. A.: The bifurcation set in a system with a homoclinic saddle curve. Math. Z., 28, 910–916 (1980)
4. Belykov, L. A.: Bifurcation of system with homoclinic curve of a saddle-focus with saddle quantity zero. Math. Z., 36, 838–843 (1984)
5. Champney, A. R., Rodrguez-Luis, A. J.: The non-transverse Sil’nikov–Hopf bifurcation: uncoupling of homoclinic orbits and homoclinic tangencies. Phys. D, 128, 130–158 (1999)