Reversibly switchable fluorescent proteins: “the fair switch project”

Author:

Nifosì RiccardoORCID,Storti BarbaraORCID,Bizzarri RanieriORCID

Abstract

AbstractFluorescent proteins (FPs) have transformed cell biology through their use in fluorescence microscopy, enabling precise labeling of proteins via genetic fusion. A key advancement is altering primary sequences to customize their photophysical properties for specific imaging needs. A particularly notable family of engineered mutants is constituted by Reversible Switching Fluorescent Proteins (RSFPs), i.e. variant whose optical properties can be toggled between a bright and a dark state, thereby adding a further dimension to microscopy imaging. RSFPs have strongly contributed to the super-resolution (nanoscopy) revolution of optical imaging that has occurred in the last 20 years and afforded new knowledge of cell biochemistry at the nanoscale. Beyond high-resolution applications, the flexibility of RSFPs has been exploited to apply these proteins to other non-conventional imaging schemes such as photochromic fluorescence resonance energy transfer (FRET). In this work, we explore the origins and development of photochromic behaviors in FPs and examine the intricate relationships between structure and photoswitching ability. We also discuss a simple mathematical model that accounts for the observed photoswitching kinetics. Although we review most RSFPs developed over the past two decades, our main goal is to provide a clear understanding of key switching phenotypes and their molecular bases. Indeed, comprehension of photoswitching phenotypes is crucial for selecting the right protein for specific applications, or to further engineer the existing ones. To complete this picture, we highlight in some detail the exciting applications of RSFPs, particularly in the field of super-resolution microscopy.

Funder

Università di Pisa

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3