Abstract
AbstractThis article is a short introduction to the modern computational techniques used to tackle the many-body problem in materials. The aim is to present the basic ideas, using simple examples to illustrate strengths and weaknesses of each method. We will start from density-functional theory (DFT) and the Kohn–Sham construction—the standard computational tools for performing electronic structure calculations. Leaving the realm of rigorous density-functional theory, we will discuss the established practice of adopting the Kohn–Sham Hamiltonian as approximate model. After recalling the triumphs of the Kohn–Sham description, we will stress the fundamental reasons of its failure for strongly-correlated compounds, and discuss the strategies adopted to overcome the problem. The article will then focus on the most effective method so far, the DFT+DMFT technique and its extensions. Achievements, open issues and possible future developments will be reviewed. The key differences between dynamical (DFT+DMFT) and static (DFT+U) mean-field methods will be elucidated. In the conclusion, we will assess the apparent dichotomy between first-principles and model-based techniques, emphasizing the common ground that in fact they share.
Funder
Forschungszentrum Jülich GmbH
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献