An Étude on the regularization and renormalization of divergences in primordial observables

Author:

Negro Anna,Patil Subodh P.

Abstract

AbstractMany cosmological observables derive from primordial vacuum fluctuations evolved to late times. These observables represent statistical draws from some underlying quantum or statistical field theoretic framework where infinities arise and require regularization. After subtraction, renormalization conditions must be imposed by measurements at some scale, mindful of scheme and background dependence. We review this process on backgrounds that transition from finite duration inflation to radiation domination, and show how in spite of the ubiquity of scaleless integrals, ultraviolet (UV) divergences can still be meaningfully extracted from quantities that nominally vanish when dimensionally regularized. In this way, one can contextualize calculations with hard cutoffs, distinguishing between UV and infrared (IR) scales corresponding to the beginning and end of inflation from UV and IR scales corresponding to the unknown completion of the theory and its observables. This distinction has significance as observable quantities cannot depend on the latter, although they will certainly depend on the former. One can also explicitly show the scheme independence of the coefficients of UV divergent logarithms. Furthermore, certain IR divergences are shown to be an artifact of the de Sitter limit and are cured for finite duration inflation. For gravitational wave observables, we stress the need to regularize stress tensors that do not presume a prior scale separation in their definition (as with the standard Isaacson form), deriving an improved stress tensor fit to purpose. We conclude by highlighting the inextricable connection between inferring $$N_\textrm{eff}$$ N eff bounds from vacuum tensor perturbations and the process of background renormalization.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3