Multilevel quadrature for elliptic problems on random domains by the coupling of FEM and BEM

Author:

Harbrecht Helmut,Schmidlin MarcORCID

Abstract

AbstractElliptic boundary value problems which are posed on a random domain can be mapped to a fixed, nominal domain. The randomness is thus transferred to the diffusion matrix and the loading. While this domain mapping method is quite efficient for theory and practice, since only a single domain discretisation is needed, it also requires the knowledge of the domain mapping. However, in certain applications, the random domain is only described by its random boundary, while the quantity of interest is defined on a fixed, deterministic subdomain. In this setting, it thus becomes necessary to compute a random domain mapping on the whole domain, such that the domain mapping is the identity on the fixed subdomain and maps the boundary of the chosen fixed, nominal domain on to the random boundary. To overcome the necessity of computing such a mapping, we therefore couple the finite element method on the fixed subdomain with the boundary element method on the random boundary. We verify on one hand the regularity of the solution with respect to the random domain mapping required for many multilevel quadrature methods, such as the multilevel quasi-Monte Carlo quadrature using Halton points, the multilevel sparse anisotropic Gauss–Legendre and Clenshaw–Curtis quadratures and multilevel interlaced polynomial lattice rules. On the other hand, we derive the coupling formulation and show by numerical results that the approach is feasible.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Modelling and Simulation,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantifying Domain Uncertainty in Linear Elasticity;SIAM/ASA Journal on Uncertainty Quantification;2024-05-30

2. The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs;Mathematical Models and Methods in Applied Sciences;2024-03-05

3. Uncertainty quantification for random domains using periodic random variables;Numerische Mathematik;2024-01-12

4. Geometric Aspects of Shape Optimization;The Journal of Geometric Analysis;2023-04-20

5. Isogeometric multilevel quadrature for forward and inverse random acoustic scattering;Computer Methods in Applied Mechanics and Engineering;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3