Abstract
AbstractA characterisation of the spaces $${\mathcal {G}}_K$$
G
K
and $${\mathcal {G}}_K'$$
G
K
′
introduced in Grothaus et al. (Methods Funct Anal Topol 3(2):46–64, 1997) and Potthoff and Timpel (Potential Anal 4(6):637–654, 1995) is given. A first characterisation of these spaces provided in Grothaus et al. (Methods Funct Anal Topol 3(2):46–64, 1997) uses the concepts of holomorphy on infinite dimensional spaces. We, instead, give a characterisation in terms of U-functionals, i.e., classic holomorphic function on the one dimensional field of complex numbers. We apply our new characterisation to derive new results concerning a stochastic transport equation and the stochastic heat equation with multiplicative noise.
Funder
Technische Universität Kaiserslautern
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Modelling and Simulation,Statistics and Probability
Reference28 articles.
1. Benth, F., Potthoff, J.: On the martingale property for generalized stochastic processes. Stoch. Stoch. Rep. 58(3–4), 349–367 (1996)
2. Berezansky, Y.M., Kondratiev, Y.G.: Spectral Methods in Infinite Dimensional Analysis. Mathematical Physics and Applied Mathematics, vol. 12. Kluwer Academic Publishers (1995)
3. Blumenthal, R., Getoor, R.: Markov Processes and Potential Theory. Pure and Applied Mathematics, vol. 29. Academic Press, New York (1968)
4. Chow, P.-L.: Generalized solution of some parabolic equations with a random drift. Appl. Math. Optim. 20(1), 1–17 (1989)
5. da Silva. J., Grothaus M., Suryawan, H.: Pointwise construction of stochastic currents as a regular generalized function of white noise. In preparation (2021)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献