An application of the splitting-up method for the computation of a neural network representation for the solution for the filtering equations

Author:

Crisan DanORCID,Lobbe AlexanderORCID,Ortiz-Latorre Salvador

Abstract

AbstractThe filtering equations govern the evolution of the conditional distribution of a signal process given partial, and possibly noisy, observations arriving sequentially in time. Their numerical approximation plays a central role in many real-life applications, including numerical weather prediction [Llopis et al. (SIAM J Sci Comput 40(3):A1544–A1565, 2018), Galanis et al. (Geophysicae 24(10): 2451–2460, 2006)], finance [Brigo and Hanzon (Insurance Math Econom 22(1):53–64, 1998), Date and Ponomareva (IMA J Manag Math 22(3): 195–211, 2011), Crisan and Rozovskii (The Oxford handbook of nonlinear filtering, 2011)] and engineering [Myötyri et al. (Reliability Eng Syst Saf 91(2):200–208, 2005)]. One of the classical approaches to approximate the solution of the filtering equations is to use a PDE inspired method, called the splitting-up method, initiated by Gyongy, Krylov, LeGland, among other contributors, see e.g., Gyöngy and Krylov (Stochastic inequalities and applications, Progr. Probab. 56:301–321, 2003), Le Gland(Stochastic partial differential equations and their applications (Charlotte, NC, 1991), Lect. Notes Control Inf. Sci. 176:177–187, 1992). This method, and other PDE based approaches, have particular applicability for solving low-dimensional problems. In this work we combine this method with a neural network representation inspired by [Han et al. (Proc Natl acad Sci 115(34):8505–8510, 2018)]. The new methodology is used to produce an approximation of the unnormalised conditional distribution of the signal process. We further develop a recursive normalisation procedure to recover the normalised conditional distribution of the signal process. The new scheme can be iterated over multiple time steps whilst keeping its asymptotic unbiasedness property intact. We test the neural network approximations with numerical approximation results for the Kalman and Benes filter.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability

Reference39 articles.

1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org

2. Al-Aradi, A., Correia, A., Naiff, D., Jardim, G., Saporito, Y.: Solving nonlinear and high-dimensional partial differential equations via deep learning (2018)

3. Bain, A., Crisan, D.: Fundamentals of Stochastic Filtering. Springer, New York (2008)

4. Beck, C., Becker, S., Cheridito, P., Jentzen, A., Neufeld, A.: Deep splitting method for parabolic pdes (2019)

5. Beck, C., Becker, S., Grohs, P., Jaafari, N., Jentzen, A.: Solving stochastic differential equations and Kolmogorov equations by means of deep learning. arXiv e-prints arXiv:1806.00421 (2018)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An energy-based deep splitting method for the nonlinear filtering problem;Partial Differential Equations and Applications;2023-03-20

2. Learning the conditional law: signatures and conditional GANs in filtering and prediction of diffusion processes;2022 IEEE 61st Conference on Decision and Control (CDC);2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3