Abstract
AbstractStrong convergence rates for fuly discrete numerical approximations of space-time white noise driven SPDEs with superlinearly growing nonlinearities, such as the stochastic Allen–Cahn equation with space-time white noise, are shown. The obtained strong rates of convergence are essentially sharp.
Funder
Westfälische Wilhelms-Universität Münster
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Modeling and Simulation,Statistics and Probability
Reference41 articles.
1. Andersson, A., Jentzen, A., Kurniawan, R.: Existence, uniqueness, and regularity for stochastic evolution equations with irregular initial values. J. Math. Anal. Appl. 495(1), 124558 (2021)
2. Becker, S., Gess, B., Jentzen, A., Kloeden, P.E.: Strong convergence rates for explicit space-time discrete numerical approximations of stochastic Allen-Cahn equations. arXiv:1711.02423v1 104 pages (2017)
3. Becker, S., Gess, B., Jentzen, A., Kloeden, P.E.: Lower and upper bounds for strong approximation errors of numerical approximations of linear stochastic heat equations. BIT Numer. Math. 60, 1057–1073 (2020)
4. Becker, S., Jentzen, A.: Strong convergence rates for nonlinearity-truncated Euler-type approximations of stochastic Ginzburg-Landau equations. Stochastic Process. Appl. 129(1), 28–69 (2019)
5. Bianchi, L.A., Blömker, D., Schneider, G.: Modulation equation and SPDEs on unbounded domains. Commun. Math. Phys. 371(1), 19–54 (2019)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献