Feynman–Kac formula for perturbations of order $$\le 1$$, and noncommutative geometry

Author:

Boldt SebastianORCID,Güneysu Batu

Abstract

AbstractLet Q be a differential operator of order $$\le 1$$ 1 on a complex metric vector bundle $$\mathscr {E}\rightarrow \mathscr {M}$$ E M with metric connection $$\nabla $$ over a possibly noncompact Riemannian manifold $$\mathscr {M}$$ M . Under very mild regularity assumptions on Q that guarantee that $$\nabla ^{\dagger }\nabla /2+Q$$ / 2 + Q canonically induces a holomorphic semigroup $$\mathrm {e}^{-zH^{\nabla }_{Q}}$$ e - z H Q in $$\Gamma _{L^2}(\mathscr {M},\mathscr {E})$$ Γ L 2 ( M , E ) (where z runs through a complex sector which contains $$[0,\infty )$$ [ 0 , ) ), we prove an explicit Feynman–Kac type formula for $$\mathrm {e}^{-tH^{\nabla }_{Q}}$$ e - t H Q , $$t>0$$ t > 0 , generalizing the standard self-adjoint theory where Q is a self-adjoint zeroth order operator. For compact $$\mathscr {M}$$ M ’s we combine this formula with Berezin integration to derive a Feynman–Kac type formula for an operator trace of the form $$\begin{aligned} \mathrm {Tr}\left( \widetilde{V}\int ^t_0\mathrm {e}^{-sH^{\nabla }_{V}}P\mathrm {e}^{-(t-s)H^{\nabla }_{V}}\mathrm {d}s\right) , \end{aligned}$$ Tr V ~ 0 t e - s H V P e - ( t - s ) H V d s , where $$V,\widetilde{V}$$ V , V ~ are of zeroth order and P is of order $$\le 1$$ 1 . These formulae are then used to obtain a probabilistic representations of the lower order terms of the equivariant Chern character (a differential graded extension of the JLO-cocycle) of a compact even-dimensional Riemannian spin manifold, which in combination with cyclic homology play a crucial role in the context of the Duistermaat–Heckmann localization formula on the loop space of such a manifold.

Funder

Universität Leipzig

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Modeling and Simulation,Statistics and Probability

Reference31 articles.

1. Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Commun. Pure Appl. Math. 35(2), 209–273 (1982)

2. Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-Parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin (1986)

3. Atiyah, M.F.: Circular symmetry and stationary-phase approximation. Colloquium in honor of Laurent Schwartz, Vol. 1 (Palaiseau, 1983). Astérisque No. 131, pp. 43–59 (1985)

4. Bérard, P.H.: Spectral Geometry: Direct and Inverse Problems. With Appendixes by Gérard Besson, and by Bérard and Marcel Berger. Lecture Notes in Mathematics, 1207, vol. 1207. Springer, Berlin (1986)

5. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Grundlehren der Mathematischen Wissenschaften, vol. 298. Springer, Berlin (1992)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3