Feynman–Kac formula for perturbations of order $$\le 1$$, and noncommutative geometry
-
Published:2022-08-29
Issue:
Volume:
Page:
-
ISSN:2194-0401
-
Container-title:Stochastics and Partial Differential Equations: Analysis and Computations
-
language:en
-
Short-container-title:Stoch PDE: Anal Comp
Author:
Boldt SebastianORCID, Güneysu Batu
Abstract
AbstractLet Q be a differential operator of order $$\le 1$$
≤
1
on a complex metric vector bundle $$\mathscr {E}\rightarrow \mathscr {M}$$
E
→
M
with metric connection $$\nabla $$
∇
over a possibly noncompact Riemannian manifold $$\mathscr {M}$$
M
. Under very mild regularity assumptions on Q that guarantee that $$\nabla ^{\dagger }\nabla /2+Q$$
∇
†
∇
/
2
+
Q
canonically induces a holomorphic semigroup $$\mathrm {e}^{-zH^{\nabla }_{Q}}$$
e
-
z
H
Q
∇
in $$\Gamma _{L^2}(\mathscr {M},\mathscr {E})$$
Γ
L
2
(
M
,
E
)
(where z runs through a complex sector which contains $$[0,\infty )$$
[
0
,
∞
)
), we prove an explicit Feynman–Kac type formula for $$\mathrm {e}^{-tH^{\nabla }_{Q}}$$
e
-
t
H
Q
∇
, $$t>0$$
t
>
0
, generalizing the standard self-adjoint theory where Q is a self-adjoint zeroth order operator. For compact $$\mathscr {M}$$
M
’s we combine this formula with Berezin integration to derive a Feynman–Kac type formula for an operator trace of the form $$\begin{aligned} \mathrm {Tr}\left( \widetilde{V}\int ^t_0\mathrm {e}^{-sH^{\nabla }_{V}}P\mathrm {e}^{-(t-s)H^{\nabla }_{V}}\mathrm {d}s\right) , \end{aligned}$$
Tr
V
~
∫
0
t
e
-
s
H
V
∇
P
e
-
(
t
-
s
)
H
V
∇
d
s
,
where $$V,\widetilde{V}$$
V
,
V
~
are of zeroth order and P is of order $$\le 1$$
≤
1
. These formulae are then used to obtain a probabilistic representations of the lower order terms of the equivariant Chern character (a differential graded extension of the JLO-cocycle) of a compact even-dimensional Riemannian spin manifold, which in combination with cyclic homology play a crucial role in the context of the Duistermaat–Heckmann localization formula on the loop space of such a manifold.
Funder
Universität Leipzig
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Modeling and Simulation,Statistics and Probability
Reference31 articles.
1. Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Commun. Pure Appl. Math. 35(2), 209–273 (1982) 2. Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-Parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin (1986) 3. Atiyah, M.F.: Circular symmetry and stationary-phase approximation. Colloquium in honor of Laurent Schwartz, Vol. 1 (Palaiseau, 1983). Astérisque No. 131, pp. 43–59 (1985) 4. Bérard, P.H.: Spectral Geometry: Direct and Inverse Problems. With Appendixes by Gérard Besson, and by Bérard and Marcel Berger. Lecture Notes in Mathematics, 1207, vol. 1207. Springer, Berlin (1986) 5. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Grundlehren der Mathematischen Wissenschaften, vol. 298. Springer, Berlin (1992)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|