Abstract
AbstractWe study the stochastic effect on the three-dimensional inviscid primitive equations (PEs, also called the hydrostatic Euler equations). Specifically, we consider a larger class of noises than multiplicative noises, and work in the analytic function space due to the ill-posedness in Sobolev spaces of PEs without horizontal viscosity. Under proper conditions, we prove the local existence of martingale solutions and pathwise uniqueness. By adding vertical viscosity, i.e., considering the hydrostatic Navier-Stokes equations, we can relax the restriction on initial conditions to be only analytic in the horizontal variables with Sobolev regularity in the vertical variable, and allow the transport noise in the vertical direction. We establish the local existence of martingale solutions and pathwise uniqueness, and show that the solutions become analytic in the vertical variable instantaneously as $$t>0$$
t
>
0
and the vertical analytic radius increases as long as the solutions exist.
Funder
Directorate for Mathematical and Physical Sciences
University of California, Santa Barbara
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Modeling and Simulation,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献