Abstract
AbstractWe prove that joint uniqueness in law and the existence of a strong solution imply pathwise uniqueness for variational solutions to stochastic partial differential equations of type $$\begin{aligned} \text {d}X_t=b(t,X)\text {d}t+\sigma (t,X)\text {d}W_t, \quad t\ge 0, \end{aligned}$$
d
X
t
=
b
(
t
,
X
)
d
t
+
σ
(
t
,
X
)
d
W
t
,
t
≥
0
,
and show that for such equations uniqueness in law is equivalent to joint uniqueness in law for deterministic initial conditions. Here W is a cylindrical Wiener process in a separable Hilbert space U and the equation is considered in a Gelfand triple $$V \subseteq H \subseteq E$$
V
⊆
H
⊆
E
, where H is some separable (infinite-dimensional) Hilbert space. This generalizes the corresponding results of Cherny, who proved these statements for the case of finite-dimensional equations.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Modeling and Simulation,Statistics and Probability
Reference14 articles.
1. Asperti, C.: Sur l’intégration stochastique par rapport à une martingale hilbertienne de carré intégrable. Probab. Theory Relat. Fields 81(1), 139–158 (1989)
2. Chernyi, A.S.: On strong and weak uniqueness for stochastic differential equations. Rossiiskaya Akademiya Nauk. Teoriya Veroyatnostei i ee Primeneniya, 3:483–497, (2001). English version: Theory Probab. Appl., 46(3):406–419, (2002)
3. Encyclopedia of Mathematics and Its Applications;G Da Prato,2014
4. Engelbert, H .J.: On the theorem of T. Yamada and S. Watanabe. Stoch. Stoch. Reports 36(3–4), 205–216 (1991)
5. Jacod, J.: Weak and strong solutions of stochastic differential equations. Stochastics 3(1–4), 171–191 (1980)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献