Fatigue Crack Growth in Austenitic and Martensitic NiTi: Modeling and Experiments

Author:

Sgambitterra E.,Magarò P.,Niccoli F.,Furgiuele F.,Maletta C.

Abstract

AbstractFatigue crack growth of austenitic and martensitic NiTi shape memory alloys was analyzed, with the purpose of capturing the effects of distinct stress-induced transformation mechanics in the two crystal structures. Mode I crack growth experiments were carried out, and near-crack-tip displacements were captured by in-situ digital image correlation (DIC). A special fitting procedure, based on the William’s solution, was used to estimate the effective stress intensity factor (SIF). The SIF was also computed by linear elastic fracture mechanics (LEFM) as well as by a special analytical model that takes into account the unique thermomechanical response of SMAs. A significant difference in the crack growth rate for the two alloys was observed, and it has been attributed to dissimilar dissipative phenomena and different crack-tip stress–strain fields, as also directly observed by DIC. Finally, it was shown that the predictions of the analytical method are in good agreement with effective results obtained by DIC, whereas a very large mismatch was observed with LEFM. Therefore, the proposed analytical model can be actually used to analyze fatigue crack propagation in both martensitic and austenitic NiTi.

Funder

Università della Calabria

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3