Localized Plastic Deformation of Superelastic NiTi Wires in Tension

Author:

Kadeřávek Lukáš,Šittner Petr,Molnárová Orsolya,Klimša Ladislav,Heller Luděk

Abstract

AbstractTensile deformation of superelastic NiTi shape memory alloy wires at temperatures above austenite finish temperature proceeds via stress-induced martensitic transformation followed by plastic deformation of oriented martensite. While superelastic deformation tends to proceed in localized manner, plastic deformation of martensite is considered to be homogeneous. In this work, we have investigated strain localization patterns in tensile tests on superelastic NiTi wires deformed until fracture in wide temperature range from 10 to 400 °C using in situ digital image correlation analysis of local strains and analyzed lattice defects created during the deformation in TEM. We have found that plastic deformation of oriented martensite can be either homogeneous or localized, depending on the yield stress and strain hardening rate (on the Considere criterion for stability of tensile deformation). Plastic deformation of martensite proceeds via peculiar deformation mode involving combination of deformation twinning and dislocation-based kinking. Strain localization takes the form of either necking leading to wire fracture at 13–15% strain or via propagation of macroscopic deformation band fronts at constant stress. Regardless the deformation is homogeneous or localized, plastic strains at fracture reach ~ 50%. Strain localized within the propagating band front as large as ~ 40% was observed in tensile tests test on NiTi wires having specific microstructures (grain size ~ 230 nm) in a narrow temperature range (~ 10–60 °C).

Funder

Institute of Physics of the Czech Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3