Open Knee(s): A Free and Open Source Library of Specimen-Specific Models and Related Digital Assets for Finite Element Analysis of the Knee Joint

Author:

Chokhandre Snehal,Schwartz Ariel,Klonowski Ellen,Landis Benjamin,Erdemir AhmetORCID

Abstract

AbstractThere is a growing interest in the use of virtual representations of the knee for musculoskeletal research and clinical decision making, and to generate digital evidence for design and regulation of implants. Accessibility to previously developed models and related digital assets can dramatically reduce barriers to entry to conduct simulation-based studies of the knee joint and therefore help accelerate scientific discovery and clinical innovations. Development of models for finite element analysis is a demanding process that is both time consuming and resource intensive. It necessitates expertise to transform raw data to reliable virtual representations. Modeling and simulation workflow has many processes such as image segmentation, surface geometry generation, mesh generation and finally, creation of a finite element representation with relevant loading and boundary conditions. The outcome of the workflow is not only the end-point knee model but also many other digital by-products. When all of these data, derivate assets, and tools are freely and openly accessible, researchers can bypass some or all the steps required to build models and focus on using them to address their research goals. With provenance to specimen-specific anatomical and mechanical data and traceability of digital assets throughout the whole lifecycle of the model, reproducibility and credibility of the modeling practice can be established. The objective of this study is to disseminate Open Knee(s), a cohort of eight knee models (and relevant digital assets) for finite element analysis, that are based on comprehensive specimen-specific imaging data. In addition, the models and by-products of modeling workflows are described along with model development strategies and tools. Passive flexion served as a test simulation case, demonstrating an end-user application. Potential roadmaps for reuse of Open Knee(s) are also discussed.

Funder

National Institute of General Medical Sciences

National Institute of Biomedical Imaging and Bioengineering

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3