Development of a Concussion Risk Function for a Youth Population Using Head Linear and Rotational Acceleration
-
Published:2019-10-28
Issue:1
Volume:48
Page:92-103
-
ISSN:0090-6964
-
Container-title:Annals of Biomedical Engineering
-
language:en
-
Short-container-title:Ann Biomed Eng
Author:
Campolettano Eamon T.ORCID, Gellner Ryan A., Smith Eric P., Bellamkonda Srinidhi, Tierney Casey T., Crisco Joseph J., Jones Derek A., Kelley Mireille E., Urban Jillian E., Stitzel Joel D., Genemaras Amaris, Beckwith Jonathan G., Greenwald Richard M., Maerlender Arthur C., Brolinson Per Gunnar, Duma Stefan M., Rowson Steven
Abstract
Abstract
Physical differences between youth and adults, which include incomplete myelination, limited neck muscle development, and a higher head-body ratio in the youth population, likely contribute towards the increased susceptibility of youth to concussion. Previous research efforts have considered the biomechanics of concussion for adult populations, but these known age-related differences highlight the necessity of quantifying the risk of concussion for a youth population. This study adapted the previously developed Generalized Acceleration Model for Brian Injury Threshold (GAMBIT) that combines linear and rotational head acceleration to model the risk of concussion for a youth population with the Generalized Acceleration Model for Concussion in Youth (GAM-CY). Survival analysis was used in conjunction with head impact data collected during participation in youth football to model risk between individuals who sustained medically-diagnosed concussions (n = 15). Receiver operator characteristic curves were generated for peak linear acceleration, peak rotational acceleration, and GAM-CY, all of which were observed to be better injury predictors than random guessing. GAM-CY was associated with an area under the curve of 0.89 (95% confidence interval: 0.82–0.95) when all head impacts experienced by the concussed players were considered. Concussion tolerance was observed to be lower for youth athletes, with average peak linear head acceleration of 62.4 ± 29.7 g compared to 102.5 ± 32.7 g for adults and average peak rotational head acceleration of 2609 ± 1591 rad/s2 compared to 4412 ± 2326 rad/s2. These data provide further evidence of age-related differences in concussion tolerance and may be used for the development of youth-specific protective designs.
Funder
National Institute of Neurological Disorders and Stroke National Operating Committee on Standards for Athletic Equipment
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering
Reference53 articles.
1. Beckwith, J. G., R. M. Greenwald, and J. J. Chu. Measuring head kinematics in football: correlation between the head impact telemetry system and hybrid III headform. Ann. Biomed. Eng. 40:237–248, 2012. 2. Beckwith, J. G., R. M. Greenwald, J. J. Chu, J. J. Crisco, S. Rowson, S. M. Duma, S. P. Broglio, T. W. McAllister, K. M. Guskiewicz, J. P. Mihalik, S. Anderson, B. Schnebel, P. G. Brolinson, and M. W. Collins. Head impact exposure sustained by football players on days of diagnosed concussion. Med. Sci. Sports Exerc. 45:737–746, 2013. 3. Beckwith, J. G., R. M. Greenwald, J. J. Chu, J. J. Crisco, S. Rowson, S. M. Duma, S. P. Broglio, T. W. McAllister, K. M. Guskiewicz, J. P. Mihalik, S. Anderson, B. Schnebel, P. G. Brolinson, and M. W. Collins. Timing of concussion diagnosis is related to head impact exposure prior to injury. Med. Sci. Sports Exerc. 45:747–754, 2013. 4. Bryan, M. A., A. Rowhani-Rahbar, R. D. Comstock, and F. Rivara. Sports-and recreation-related concussions in US youth. Pediatrics 138:e20154635, 2016. 5. Choe, M. C., T. Babikian, J. DiFiori, D. A. Hovda, and C. C. Giza. A pediatric perspective on concussion pathophysiology. Curr. Opin. Pediatr. 24:689–695, 2012.
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|