Selective Partitioned Regression for Accurate Kidney Health Monitoring

Author:

Whelan Alex,Elsayed Ragwa,Bellofiore Alessandro,Anastasiu David C.ORCID

Abstract

AbstractThe number of people diagnosed with advanced stages of kidney disease have been rising every year. Early detection and constant monitoring are the only minimally invasive means to prevent severe kidney damage or kidney failure. We propose a cost-effective machine learning-based testing system that can facilitate inexpensive yet accurate kidney health checks. Our proposed framework, which was developed into an iPhone application, uses a camera-based bio-sensor and state-of-the-art classical machine learning and deep learning techniques for predicting the concentration of creatinine in the sample, based on colorimetric change in the test strip. The predicted creatinine concentration is then used to classify the severity of the kidney disease as healthy, intermediate, or critical. In this article, we focus on the effectiveness of machine learning models to translate the colorimetric reaction to kidney health prediction. In this setting, we thoroughly evaluated the effectiveness of our novel proposed models against state-of-the-art classical machine learning and deep learning approaches. Additionally, we executed a number of ablation studies to measure the performance of our model when trained using different meta-parameter choices. Our evaluation results indicate that our selective partitioned regression (SPR) model, using histogram of colors-based features and a histogram gradient boosted trees underlying estimator, exhibits much better overall prediction performance compared to state-of-the-art methods. Our initial study indicates that SPR can be an effective tool for detecting the severity of kidney disease using inexpensive lateral flow assay test strips and a smart phone-based application. Additional work is needed to verify the performance of the model in various settings.

Funder

Santa Clara University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3