Non-Linear Device Head Coupling and Temporal Delays in Large Animal Acceleration Models of Traumatic Brain Injury

Author:

Mayer Andrew R.ORCID,Ling Josef M.,Patton Declan A.,Stephenson David D.,Dodd Andrew B.,Dodd Rebecca J.,Rannou-Latella Julie G.,Smith Douglas H.,Johnson Victoria E.,Cullen D. Kacy,Meier Timothy B.,Kinsler Rachel E.

Abstract

AbstractAccurate characterization of head kinematics following an external blow represents a fundamental aspect of traumatic brain injury (TBI) research. The majority of previous large animal studies have assumed an equivalent relationship between the device delivering the impulsive load and subsequent head kinematics rather than performing direct measurement (sensors or videography). The current study therefore examined factors affecting device/head coupling kinematics in an acceleration TBI model. Experiment 1 indicated ~ 50% reduction in peak angular velocity for swine head relative to the device, with an approximate doubling in temporal duration. The peak angular velocity for the head was not significantly altered by variations in restraint device (straps vs. cables), animal positioning or body mass. In Experiment 2, reducing the impulsive load by 32% resulted in only a 14% reduction in angular velocity of the head (approximately 69% head/device coupling ratio), with more pronounced differences qualitatively observed for angular momentum. A temporal delay was identified in initial device/head coupling, potentially a result of soft tissue deformation. Finally, similar head kinematics were obtained regardless of mounting the sensor directly to the skull or through the scalp (Experiment 3). Current findings highlight the importance of direct measurement of head kinematics for future studies.

Funder

u.s. department of defense

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3