Discrimination of Low-Energy Acetabular Fractures from Controls Using Computed Tomography-Based Bone Characteristics

Author:

Gebre Robel K.ORCID,Hirvasniemi Jukka,Lantto Iikka,Saarakkala Simo,Leppilahti Juhana,Jämsä Timo

Abstract

AbstractThe incidence of low-energy acetabular fractures has increased. However, the structural factors for these fractures remain unclear. The objective of this study was to extract trabecular bone architecture and proximal femur geometry (PFG) measures from clinical computed tomography (CT) images to (1) identify possible structural risk factors of acetabular fractures, and (2) to discriminate fracture cases from controls using machine learning methods. CT images of 107 acetabular fracture subjects (25 females, 82 males) and 107 age-gender matched controls were examined. Three volumes of interest, one at the acetabulum and two at the femoral head, were extracted to calculate bone volume fraction (BV/TV), gray-level co-occurrence matrix and histogram of the gray values (GV). The PFG was defined by neck shaft angle and femoral neck axis length. Relationships between the variables were assessed by statistical mean comparisons and correlation analyses. Bayesian logistic regression and Elastic net machine learning models were implemented for classification. We found lower BV/TV at the femoral head (0.51 vs. 0.55, p = 0.012) and lower mean GV at both the acetabulum (98.81 vs. 115.33, p < 0.001) and femoral head (150.63 vs. 163.47, p = 0.005) of fracture subjects when compared to their matched controls. The trabeculae within the femoral heads of the acetabular fracture sides differed in structure, density and texture from the corresponding control sides of the fracture subjects. Moreover, the PFG and trabecular architectural variables, alone and in combination, were able to discriminate fracture cases from controls (area under the receiver operating characteristics curve 0.70 to 0.79). In conclusion, lower density in the acetabulum and femoral head with abnormal trabecular structure and texture at the femoral head, appear to be risk factors for low-energy acetabular fractures.

Funder

EP-Nuffic

H2020 Marie Skłodowska-Curie Actions

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3