Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study
-
Published:2024-07-16
Issue:9
Volume:52
Page:2584-2595
-
ISSN:0090-6964
-
Container-title:Annals of Biomedical Engineering
-
language:en
-
Short-container-title:Ann Biomed Eng
Author:
Tuppurainen JuusoORCID, Paakkari Petri, Jäntti Jiri, Nissinen Mikko T., Fugazzola Maria C., van Weeren René, Ylisiurua Sampo, Nieminen Miika T., Kröger Heikki, Snyder Brian D., Joenathan Anisha, Grinstaff Mark W., Matikka Hanna, Korhonen Rami K., Mäkelä Janne T. A.
Abstract
AbstractThe ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (n = 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents’ intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta2O5-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta2O5-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.
Funder
Instrumentariumin Tiedesäätiö Orionin Tutkimussäätiö Competitive State Research Funding of the Kuopio University Hospital Catchment Area Research Council of Finland Biokeskus Kuopio, Itä-Suomen yliopisto Regional Council of Pohjois-Savo University of Eastern Finland
Publisher
Springer Science and Business Media LLC
Reference63 articles.
1. Bansal, P. N., N. S. Joshi, V. Entezari, M. W. Grinstaff, and B. D. Snyder. Contrast enhanced computed tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage. Osteoarthr. Cartil. 18:184–191, 2010. 2. Bansal, P. N., N. S. Joshi, V. Entezari, B. C. Malone, R. C. Stewart, B. D. Snyder, and M. W. Grinstaff. Cationic contrast agents improve quantification of glycosaminoglycan (GAG) content by contrast enhanced CT imaging of cartilage. J. Orthop. Res. 29:704–709, 2011. 3. Bhattarai, A., J. T. J. Honkanen, K. A. H. Myller, M. Prakash, M. Korhonen, A. E. A. Saukko, T. N. Viré, A. Joukainen, A. N. Patwa, H. Kro, M. W. Grinstaff, and J. S. Jurvelin. Quantitative dual contrast CT technique for evaluation of articular cartilage properties. Ann. Biomed. Eng. 46:1038–1046, 2018. 4. Bhattarai, A., J. T. A. Mäkelä, B. Pouran, H. Kröger, H. Weinans, M. W. Grinstaff, J. Töyräs, and M. J. Turunen. Effects of human articular cartilage constituents on simultaneous diffusion of cationic and nonionic contrast agents. J. Orthop. Res. 39:771–779, 2021. 5. Bhattarai, A., B. Pouran, J. T. A. Mäkelä, R. Shaikh, M. K. M. Honkanen, M. Prakash, H. Kröger, M. W. Grinstaff, H. Weinans, J. S. Jurvelin, and J. Töyräs. Dual contrast in computed tomography allows earlier characterization of articular cartilage over single contrast. J. Orthop. Res. 38:2230–2238, 2020.
|
|