Population-Based Bone Strain During Physical Activity: A Novel Method Demonstrated for the Human Femur
Author:
Funder
Australian Research Council
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering
Link
http://link.springer.com/content/pdf/10.1007/s10439-020-02483-3.pdf
Reference32 articles.
1. Al-Dirini, R. M. A., S. Martelli, D. O’Rourke, D. Huff, J. Zhang, J. G. Clement, T. Besier, and M. Taylor. Virtual trial to evaluate the robustness of cementless femoral stems to patient and surgical variation. J. Biomech. 82:346–356, 2019.
2. Al-Dirini, R. M. A., J. Nisyrios, M. P. Reed, and D. Thewlis. Quantifying the in vivo quasi-static response to loading of sub-dermal tissues in the human buttock using magnetic resonance imaging. Clin. Biomech. 50:70–77, 2017.
3. Bah, M. T., J. Shi, M. Browne, Y. Suchier, F. Lefebvre, P. Young, L. King, D. G. Dunlop, and M. O. Heller. Exploring inter-subject anatomic variability using a population of patient-specific femurs and a statistical shape and intensity model. Med. Eng. Phys. 37:995–1007, 2015.
4. Bonaretti, S., C. Seiler, C. Boichon, M. Reyes, and P. Büchler. Image-based vs. mesh-based statistical appearance models of the human femur: implications for finite element simulations. Med. Eng. Phys. 36:1626–1635, 2014.
5. Bryan, R. Large scale, multi femur computational stress analysis using a statistical shape and intensity model. Doctoral Thesis, University of Southampton, 2010.
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Real-time replication of three-dimensional and time-varying physiological loading cycles for bone and implant testing: A novel protocol demonstrated for the proximal human femur while walking;Journal of the Mechanical Behavior of Biomedical Materials;2021-12
2. Machine learning methods to support personalized neuromusculoskeletal modelling;Biomechanics and Modeling in Mechanobiology;2020-07-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3