A Review of Cyclist Head Injury, Impact Characteristics and the Implications for Helmet Assessment Methods

Author:

Baker Claire E.ORCID,Yu Xiancheng,Patel Saian,Ghajari Mazdak

Abstract

AbstractHead injuries are common for cyclists involved in collisions. Such collision scenarios result in a range of injuries, with different head impact speeds, angles, locations, or surfaces. A clear understanding of these collision characteristics is vital to design high fidelity test methods for evaluating the performance of helmets. We review literature detailing real-world cyclist collision scenarios and report on these key characteristics. Our review shows that helmeted cyclists have a considerable reduction in skull fracture and focal brain pathologies compared to non-helmeted cyclists, as well as a reduction in all brain pathologies. The considerable reduction in focal head pathologies is likely to be due to helmet standards mandating thresholds of linear acceleration. The less considerable reduction in diffuse brain injuries is likely to be due to the lack of monitoring head rotation in test methods. We performed a novel meta-analysis of the location of 1809 head impacts from ten studies. Most studies showed that the side and front regions are frequently impacted, with one large, contemporary study highlighting a high proportion of occipital impacts. Helmets frequently had impact locations low down near the rim line. The face is not well protected by most conventional bicycle helmets. Several papers determine head impact speed and angle from in-depth reconstructions and computer simulations. They report head impact speeds from 5 to 16 m/s, with a concentration around 5 to 8 m/s and higher speeds when there was another vehicle involved in the collision. Reported angles range from 10° to 80° to the normal, and are concentrated around 30°–50°. Our review also shows that in nearly 80% of the cases, the head impact is reported to be against a flat surface. This review highlights current gaps in data, and calls for more research and data to better inform improvements in testing methods of standards and rating schemes and raise helmet safety.

Funder

Road Safety Trust

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3