Author:
Buatier de Mongeot F,Toma A,Molle A,Lizzit S,Petaccia L,Baraldi A
Abstract
Abstract
Nonequilibrium periodic nanostructures such as nanoscale ripples, mounds and rhomboidal pyramids formed on Rh(110) are particularly interesting as candidate model systems with enhanced catalytic reactivity, since they are endowed with steep facets running along nonequilibrium low-symmetry directions, exposing a high density of undercoordinated atoms. In this review we report on the formation of these novel nanostructured surfaces, a kinetic process which can be controlled by changing parameters such as temperature, sputtering ion flux and energy. The role of surface morphology with respect to chemical reactivity is investigated by analysing the carbon monoxide dissociation probability on the different nanostructured surfaces.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference43 articles.
1. Moroni R, Sekiba D, Buatier de Mongeot F, Gonella G, Boragno C, Mattera L, Valbusa U: Phys. Rev. Lett.. 2003, 91: 167207. COI number [1:STN:280:DC%2BD3srjsVeksw%3D%3D] 10.1103/PhysRevLett.91.167207
2. Crucq A. (Ed): Catalysis and Automotive Pollution Control II, Studies in Surface Science and Catalysis. Elsevier, Amsterdam; 1991.
3. Newsome DS: Cat. Rev.-Sci. Eng. 1980, 21: 275. COI number [1:CAS:528:DyaL3cXitVShuro%3D] 10.1080/03602458008067535
4. Zhang Y, Jacobs G, Sparks DE, Dry ME, Davis BH: Catal. Today. 2002, 71: 411. COI number [1:CAS:528:DC%2BD38XhtFGqsLw%3D] 10.1016/S0920-5861(01)00468-0
5. Somorjai GA: Introduction to Surface Chemistry and Catalysis. Wiley, New York; 1994.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献