Decreased Fibroblast and Increased Osteoblast Functions on Ionic Plasma Deposited Nanostructured Ti Coatings

Author:

Cohen Ariel,Liu-Synder Peishan,Storey Dan,Webster Thomas J

Abstract

Abstract Bioactive coatings are in high demand to control cellular functions for numerous medical devices. The objective of this in vitro study was to characterize for the first time fibroblast (fibrous scar tissue forming cells) adhesion and proliferation on an important polymeric biomaterial (silicone) coated with titanium using a novel ionic plasma deposition (IPD) process. Fibroblasts are one of the first anchorage-dependent cells to arrive at an implant surface during the wound healing process. Persistent excessive functions of fibroblasts have been linked to detrimental fibrous tissue formation which may cause implant failure. The IPD process creates a surface-engineered nanostructure (with features usually below 100 nm) by first using a vacuum to remove all contaminants, then guiding charged metallic ions or plasma to the surface of a medical device at ambient temperature. Results demonstrated that compared to currently used titanium and uncoated silicone, silicone coated with titanium using IPD significantly decreased fibroblast adhesion and proliferation. Results also showed competitively increased osteoblast (bone-forming cells) over fibroblast adhesion on silicone coated with titanium; in contrast, osteoblast adhesion was not competitively increased over fibroblast adhesion on uncoated silicone or titanium controls. In this manner, this study strongly suggests that IPD should be further studied for biomaterial applications in which fibrous tissue encapsulation is undesirable (such as for orthopedic implants, cardiovascular components, etc.).

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science

Reference15 articles.

1. http://www.azom.com/details.asp?ArticleID = 1405

2. Furlong R, Osborn JF: J. Bone Joint Surg. Br.. 2001, 73B: 741.

3. K.C. Baker, M.A. Anderson, S.A. Oehlke, A.I. Astashkina, D.C. Haikio, J. Drelich and S.W. Donahue, Mater. Sci. Eng.C (in press)

4. Karlsson M, Palsgard E, Wilshaw PR, Silvio LD: Biomaterials. 2003, 24: 3039. COI number [1:CAS:528:DC%2BD3sXkvFSntr4%3D] 10.1016/S0142-9612(03)00146-7

5. Popat KC, Swan EEL, Mukhatyar V, Chatvanichkul KI, Mor GK, Grimes CA, Desai TA: Biomaterials. 2005, 26: 4516. COI number [1:CAS:528:DC%2BD2MXhs1GgtLg%3D] 10.1016/j.biomaterials.2004.11.026

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3