Author:
Hullavarad Shiva,Hullavarad Nilima,Look David,Claflin Bruce
Abstract
Abstract
The phenomenon of persistent photoconductivity is elusive and has not been addressed to an extent to attract attention both in micro and nanoscale devices due to unavailability of clear material systems and device configurations capable of providing comprehensive information. In this work, we have employed a nanostructured (nanowire diameter 30–65 nm and 5 μm in length) ZnO-based metal–semiconductor–metal photoconductor device in order to study the origin of persistent photoconductivity. The current–voltage measurements were carried with and without UV illumination under different oxygen levels. The photoresponse measurements indicated a persistent conductivity trend for depleted oxygen conditions. The persistent conductivity phenomenon is explained on the theoretical model that proposes the change of a neutral anion vacancy to a charged state.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference34 articles.
1. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H: Adv. Mater.. 2003, 15: 353. COI number [1:CAS:528:DC%2BD3sXisFemtro%3D] 10.1002/adma.200390087
2. Appell D: Nature. 2002, 419: 553. COI number [1:CAS:528:DC%2BD38Xns1Ons7w%3D]; Bibcode number [2002Natur.419..553A] 10.1038/419553a
3. R. Grace, The 2006 report card on the barriers to the commercializationof MEMS and nanotechnology, http://www.rgrace.com/Papers/2006_Report_Card.pdf and www.rgrace.com
4. Nakamura S, Fasol G: The Blue Laser Diode. Springer, Berlin; 1997.
5. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T: Prog. Mater. Sci.. 2005, 50: 293. COI number [1:CAS:528:DC%2BD2cXovFWrsbc%3D] 10.1016/j.pmatsci.2004.04.001
Cited by
124 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献