Abstract
Abstract
One of the main directions of contemporary semiconductor physics is the production and study of structures with a dimension less than two: quantum wires and quantum dots, in order to realize novel devices that make use of low-dimensional confinement effects. One of the promising fabrication methods is to use self-organized three-dimensional (3D) structures, such as 3D coherent islands, which are often formed during the initial stage of heteroepitaxial growth in lattice-mismatched systems. This article is intended to convey the flavour of the subject by focussing on the structural, optical and electronic properties and device applications of self-assembled quantum dots and to give an elementary introduction to some of the essential characteristics.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference67 articles.
1. Reed MA, et al.: Phys. Rev. Lett.. 1988, 60: 535. COI number [1:CAS:528:DyaL1cXitFSnsLY%3D] 10.1103/PhysRevLett.60.535
2. Ashoori RC, et al.: Phys. Rev. Lett.. 1992, 68: 3088. COI number [1:CAS:528:DyaK38XktFynt7s%3D] 10.1103/PhysRevLett.68.3088
3. Bimberg D, Grundmann M, Ledetsov NN: Quantum Dot Heterostructures. Wiley, Chichester; 1998.
4. Chu L, et al.: Appl. Phys. Lett.. 1999, 75: 3599. COI number [1:CAS:528:DyaK1MXnsFyrsLY%3D] 10.1063/1.125400
5. Muto S: Jpn. J. Appl. Phys.. 1995, 34: 210. 10.1143/JJAP.34.L210
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献