Author:
Chen Hongbo,Zheng Yi,Tian Ge,Tian Yan,Zeng Xiaowei,Liu Gan,Liu Kexin,Li Lei,Li Zhen,Mei Lin,Huang Laiqiang
Abstract
Abstract
Three types of nanoparticle formulation from biodegradable PLGA-TPGS random copolymer were developed in this research for oral administration of anticancer drugs, which include DMAB-modified PLGA nanoparticles, unmodified PLGA-TPGS nanoparticles and DMAB-modified PLGA-TPGS nanoparticles. Firstly, the PLGA-TPGS random copolymer was synthesized and characterized. DMAB was used to increase retention time at the cell surface, thus increasing the chances of particle uptake and improving oral drug bioavailability. Nanoparticles were found to be of spherical shape with an average particle diameter of around 250 nm. The surface charge of PLGA-TPGS nanoparticles was changed to positive after DMAB modification. The results also showed that the DMAB-modified PLGA-TPGS nanoparticles have significantly higher level of the cellular uptake than that of DMAB-modified PLGA nanoparticles and unmodified PLGA-TPGS nanoparticles. In vitro, cytotoxicity experiment showed advantages of the DMAB-modified PLGA-TPGS nanoparticle formulation over commercial Taxotere® in terms of cytotoxicity against MCF-7 cells. In conclusion, oral chemotherapy by DMAB-modified PLGA-TPGS nanoparticle formulation is an attractive and promising treatment option for patients.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference33 articles.
1. Kuppens IE, Bosch TM, van Maanen MJ, Rosing H, Fitzpatrick A, Beijnen JH, Schellens JH: Oral bioavailability of docetaxel in combination with OC144–093 (ONT-093). Cancer Chemother Pharmacol 2005,55(1):72–78. 10.1007/s00280-004-0864-4
2. Feng SS, Mei L, Anitha P, Gan CW, Zhou W: Poly (lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials 2009,30(19):3297–3306. 10.1016/j.biomaterials.2009.02.045
3. Sparreboom A, Van Asperen J, Mayer U, Schinkel AH, Smit JW, Meijer DKF, Borst P, Nooijen WJ, Beijnen JH, van Tellingen O: Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci USA 1997, 94: 2031–2035. 10.1073/pnas.94.5.2031
4. Wils P, Phung-Ba V, Warnery A, Lechardeur D, Raeissi S, Hidalgo IJ, Scherman D: Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol 1994, 48: 1528–1530. 10.1016/0006-2952(94)90580-0
5. Marre F, Sanderink GJ, de Sousa G, Gaillard C, Martinet M, Rahmani R: Hepatic biotransformation of docetaxel (Taxotere) in vitro: Involvement of the CYP3A subfamily in humans. Cancer Res 1996, 56: 1296–1302.
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献