Author:
Wang Jun,Gao Xin,Yang Xianyan,Gan Yilai,Weng Wenjian,Gou Zhongru
Abstract
Abstract
The shell wall-functionalized siliceous hollow nanospheres (SHNs) with functional molecules represent an important class of nanocarriers for a rich range of potential applications. Herein, a self-templated approach has been developed for the synthesis of in situ functionalized SHNs, in which the biocompatible long-chain polycarboxylates (i.e., polyacrylate, polyaspartate, gelatin) provide the framework for silica precursor deposition by simply controlling chain conformation with divalent metal ions (i.e., Ca2+, Sr2+), without the intervention of any external templates. Metal ions play crucial roles in the formation of organic vesicle templates by modulating the long chains of polymers and preventing them from separation by washing process. We also show that, by in situ functionalizing the shell wall of SHNs, it is capable of entrapping nearly an eightfold quantity of vitamin Bc in comparison to the bare bulk silica nanospheres. These results confirm the feasibility of guest species entrapment in the functionalized shell wall, and SHNs are effective carriers of guest (bio-)molecules potentially for a variety of biomedical applications. By rationally choosing the functional (self-templating) molecules, this concept may represent a general strategy for the production of functionalized silica hollow structures.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science
Reference45 articles.
1. D.L. Wilcox, M. Berg, T. Bernat, D. Kellerman, J.K. Cochran (Eds.), Hollow and Solid Spheres ans Microspheres. MRS symposium Proceedings. Vol. 372 Materials Research Society, Pittsburg, PA, 1995
2. Perkin KK, Tuner JL, Wooley KL, Mann S: Nano. Lett.. 2005, 5: 1457. COI number [1:CAS:528:DC%2BD2MXltlGntro%3D]; Bibcode number [2005NanoL...5.1457P] 10.1021/nl050817w
3. Cai Y, Pan H, Xu X, Hu Q, Li L, Tang R: Chem. Mater.. 2006, 19: 3081. 10.1021/cm070298t
4. Collins AM, Spickermann C, Mann S: J. Chem. Mater.. 2003, 13: 1112. COI number [1:CAS:528:DC%2BD3sXjtVCntbo%3D] 10.1039/b301183f
5. Lal M, Levy L, Kim KS, He GS, Wang X, Min YH, Pakatchi S, Prasad PN: Chem. Mater.. 2000, 12: 2632. COI number [1:CAS:528:DC%2BD3cXlslChsrc%3D] 10.1021/cm000178k
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献