Bioinspired Hard–Soft Interface Management for Superior Performance in Carbon Fibre Composites

Author:

Newman Ben,Randall James D.,Varley Russell J.,Stojcevski Filip,Henderson Luke C.ORCID

Abstract

AbstractNature has evolved to create materials of unmatched performance governed by the interfacial interactions between hard and soft surfaces. Typically, in a carbon fibre composite, one polymer and one type of carbon fibre is used throughout a laminate. In this work, we use a carbon fibre surface modification approach to vary the fibre–matrix interface throughout the laminate to tailor the soft–hard interfaces. We demonstrate this effect using reclaimed carbon fibre materials in a thermoset polymer, then extend this concept to a thermoplastic polymer matrix–polypropylene. The thermoset specimens examined in this work consist of 5 carbon fibre plies, featuring 0, 1, 3 or 5 surface-modified layers located at the centre of the composite. The largest improvements in physical properties for these composites (yield strength, ultimate flexural strength, and tensile modulus) were found when only 1 modified layer of carbon fibre was placed directly within the centre of the composite. Subsequent investigations revealed that for a polypropylene matrix, where the surface chemistry is tailored specifically for polypropylene, improvements are also observed when mixed surface chemistries are used. This work shows that surface modification of reclaimed carbon fibres as non-woven mats can provide significant improvements in mechanical properties performance for structural composites when used in strategically advantageous locations throughout the composite.

Funder

Australian Research Council

Office of Naval Research Global

Deakin University

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3