Biodegradable Biconstituent Melt-Blown Nonwovens for Air Filtration: Fabrication and Characterization

Author:

Eticha Andinet Kumella,Akgul YasinORCID,Pakolpakcil Ayben,Unlu Oguz Kagan,Ahmed Salih Birhanu,Cug Harun,Kilic Ali

Abstract

AbstractMelt-blown polypropylene (PP) is extensively used in air filtration due to its low cost, low weight, and easy processing, but there are increasing environmental concerns due to its non-degradability. On the other side biodegradable polymers such as polylactic acid (PLA) present insufficient strength and limited toughness. Polymer blending is a well-known approach to reach optimum properties from at least two polymers. This study aims to produce biodegradable PP-PLA-based filter materials that possess enhanced elasticity and superior filtration performance. The addition of PLA raises the average fiber diameter (AFD), causing the PP-PLA filters to have AFD ranging from 0.73 to 0.91 μm. However, the incorporation of zinc stearate (ZnSt) decreased the melt viscosity, resulting in thinner fiber formations with AFD ranging from 0.6 to 0.75 μm for PP-PLA-ZnSt. The efficiency of the corona-charged optimized sample (double-layer 75PP-25PLA-ZnSt) showed 97.42% particle capture efficiency and filtration performance of 0.12 mmH2O−1. Despite the presence of hydrophobic surfaces in all filter materials, the addition of ZnSt further improves the resistance to surface wettability. 75PP-25PLA-ZnSt filter material exhibits high stretchability, with a maximum tensile strength of 380 ± 70 kPa. The proposed tricomponent (PP-PLA-ZnSt) approach would be used to reduce the environmental impact of non-degrading polymers. Graphical abstract

Funder

Karabuk University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3