Determination of Thermal Effusivity of Lunar Regolith Simulant Particle Using Thermal Microscopy

Author:

Endo RieORCID,Suganuma Yuto,Endo KazukiORCID,Nishi TsuyoshiORCID,Ohta HiromichiORCID,Tachikawa Sumitaka

Abstract

AbstractThis study aimed to measure the thermal effusivity distribution on a lunar regolith simulant (FJS-1) using a thermal microscope and to calculate the average thermal effusivity and thermal conductivity using density and specific heat. Moreover, discussions were conducted based on the results of the microstructural analysis of the sample. The FJS-1 particles were embedded in an epoxy resin and polished to a mirror finish. The samples were analyzed using scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM–EDS). X-ray diffraction (XRD) was performed to identify the mineral phases in FJS-1. The results of SEM–EDS and XRD showed that a single sand particle was composed of several minerals, such as anorthite and olivine. Then, the thermal microscope was used to obtain the distribution of the thermal effusivity of a particle from the mirror-finished sample in a 1 × 1 mm2 area with intervals of 10 μm. The measured thermal effusivity correlates with the SEM image of the sample. Anorthite has a small thermal effusivity of 1.99 ± 0.31 kJ·s−0.5·m−2·K−1, while olivine has a large thermal effusivity of 2.73 ± 0.35 kJ·s−0.5·m−2·K−1. In both cases, the thermal effusivity was found to be of the same order of magnitude as the reported values. The average thermal effusivity and conductivity of a single particle were determined to be 2.4 ± 0.6 kJ·s−0.5·m−2·K−1 and 2.6 ± 1.3 W m−1·K−1, respectively, based on the proportion of existing phases.

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3