A Numerical Algorithm for Calculating Critical Points and Its Application to Predictive Mixture Models and Binary CO$$_2$$ Mixtures

Author:

Rath Sebastian,Gampe Uwe,Jäger Andreas

Abstract

AbstractThe use of supercritical fluids in technical applications requires an accurate knowledge of their critical points. For mixtures, these can deviate significantly and without a linear dependency from the critical points of its individual pure components. Since even small amounts of admixture can have noticeable effects, this not only concerns blends of targeted compositions, but also unintentional mixtures for example caused by impurities. Within this work, a method for the calculation of critical points is presented which focuses on numerical robustness promoting a fast and reliable generation of results. Implemented into the thermodynamic property software TREND, with its mixture modeling capabilities, the method allows a flexible combination of different equations of state and mixture models which also includes predictive approaches. Against the background of an increasing relevance of mixtures based on supercritical CO$$_2$$ 2 (sCO$$_2$$ 2 ) for energy applications, critical lines are calculated and compared against experimental results for selected sCO$$_2$$ 2 -based mixtures recently considered for power plant applications. Herein, several combinations of equations of state (EoS) and mixture models are compared. Critical lines are calculated for the first time in this work with the combination of the multi-fluid mixture model with excess Gibbs energy ($$g^\text {E}$$ g E ) models. It was found that the critical lines calculated with the combination of the multi-fluid mixture model with the $$g^\text {E}$$ g E -model COSMO-SAC yields good predictive results for the investigated CO$$_2$$ 2 mixtures.

Funder

Technische Universität Dresden

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3