Ionic and Thermal Transport in Na-Ion-Conducting Ceramic Electrolytes

Author:

Rohde MagnusORCID,Mohsin Ijaz U. I.,Ziebert Carlos,Seifert Hans Jürgen

Abstract

AbstractWe have studied the ionic and thermal transport properties along with the thermodynamic key properties of a Na-ion-conducting phosphate ceramic. The system Na1+xAlxTi2−x(PO4)3 (NATP) with x = 0.3 was taken as a NASICON-structured model system which is a candidate material for solid electrolytes in post-Li energy storage. The commercially available powder (NEI Coorp., USA) was consolidated using cold isostatic pressing before sintering. In order to compare NATP with the “classical” NASICON system, Na1+xZr2(SiO4)x(PO4)3−x (NaZSiP) was synthesized with compositions of x = 1.7 and x = 2, respectively, and characterized with regard to their ionic and thermal transport behavior. While ionic conductivity of the NaZSiP compositions was about more than two orders of magnitude higher than in NATP, the thermal conductivity of the NASICON compound showed an opposite behavior. The room temperature value was about a factor two higher in NATP compared to NaZSiP. While the thermal conductivity decreases with increasing temperature in NATP, it increases with increasing temperature in NaZSiP. However, the overall change of this thermal transport parameter over the measured temperature range from room temperature up to 800 °C appeared to be relatively small.

Funder

Deutsche Forschungsgemeinschaft

Karlsruher Institut für Technologie (KIT)

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3