Author:
Mickoleit Erik,Jäger Andreas,Grau Turuelo Constantino,Thol Monika,Bell Ian H.,Breitkopf Cornelia
Abstract
AbstractIn this work it is shown how the entropy scaling paradigm introduced by Rosenfeld (Phys Rev A 15:2545–2549, 1977, https://doi.org/10.1103/PhysRevA.15.2545) can be extended to calculate the viscosities of branched alkanes by group contribution methods (GCM), making the technique more predictive. Two equations of state (EoS) requiring only a few adjustable parameters (Lee–Kesler–Plöcker and PC-SAFT) were used to calculate the thermodynamic properties of linear and branched alkanes. These EOS models were combined with first-order and second-order group contribution methods to obtain the fluid-specific scaling factor allowing the scaled viscosity values to be mapped onto the generalized correlation developed by Yang et al. (J Chem Eng Data 66:1385–1398, 2021, https://doi.org/10.1021/acs.jced.0c01009) The second-order scheme offers a more accurate estimation of the fluid-specific scaling factor, and overall the method yields an AARD of 10 % versus 8.8 % when the fluid-specific scaling factor is fit directly to the experimental data. More accurate results are obtained when using the PC-SAFT EoS, and the GCM generally out-performs other estimation schemes proposed in the literature for the fluid-specific scaling factor.
Funder
Technische Universität Dresden
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献