Measurement of the (p, ρ, T) Behavior of Liquid MEA and DEA at Temperatures from (293.15 to 423.15) K and Pressures up to 90 MPa

Author:

Scholz Christian W.,Span RolandORCID

Abstract

AbstractDensities in the homogeneous liquid phase of (mono-)ethanolamine (MEA) and diethanolamine (DEA) were investigated using a commercially available high-pressure vibrating-tube densimeter (VTD). Due to the melting point of the experimental materials, the setup of the VTD had to be modified by an insulated housing of the entire piping including the pressure pump. The insulated housing could be heated up by a temperature-controlled heating fan. The liquid samples with a purity of (0.9994 or 0.9950) mole fraction, respectively, were decanted within an inert protective argon atmosphere and further degassed by several freeze–pump–thaw cycles. Density measurements were carried out at temperatures between (293, respectively, 313 and 423) K and at pressures between (5 and 90) MPa. The resulting 140, respectively, 120 (p, ρ, T) data points, explicitly extend the published database for MEA and DEA, with regards to pressure. A comparison with the currently used equations of state for MEA and DEA revealed a maximum relative deviation of – 0.18 % for MEA and – 0.41 % for DEA, each at the highest investigated temperature and pressure. Considering the measurement uncertainties in temperature, pressure, and oscillation period, as well as uncertainties resulting from the calibration and from the impurities of the sample, the combined expanded relative uncertainty (k = 2) in density varied from (0.1027 to 0.1038) % and from (0.1104 to 0.1130) %, respectively. The VTD was previously calibrated by comprehensive measurements of water and helium and had been further validated by measurements with pure propane.

Funder

Ruhr-Universität Bochum

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics

Reference111 articles.

1. EU Technical Expert Group on Sustainable Finance, Taxonomy Report (2020). https://ec.europa.eu/info/sites/info/files/business_economy_euro/banking_and_finance/documents/200309-sustainable-finance-teg-final-report-taxonomy-annexes_en.pdf. Accessed 17 September 2020

2. European Comission, A Clean Planet for all (2019). https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52018DC0773&from=EN. Accessed 17 September 2020

3. M.R.M. Abu-Zahra, L.H.J. Schneiders, J.P.M. Niederer, P.H.M. Feron, G.F. Versteeg, Int. J. Greenhouse Gas Control (2007). https://doi.org/10.1016/S1750-5836(06)00007-7

4. S. Baj, A. Siewniak, A. Chrobok, T. Krawczyk, A. Sobolewski, J. Chem. Technol. Biotechnol (2013). https://doi.org/10.1002/jctb.3958

5. E.B. Rinker, S.S. Ashour, O.C. Sandall, Ind. Eng. Chem. Res. (2000). https://doi.org/10.1021/ie990850r

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3