Framework for In Situ Measurements of Vapor–Liquid Equilibrium Using a Microwave Cavity Resonator

Author:

Leusmann Yvonne,Hopkins Matthew G.,May Eric F.ORCID,Stanwix Paul L.ORCID,Richter MarkusORCID

Abstract

AbstractThe ability to accurately predict the behavior of multiphase fluid mixtures underpins a broad range of industrial and scientific activity. Expanding the scope and improving the performance of predictive thermodynamic models relies on the availability of accurate experimental data for the complete phase behavior of the corresponding fluid mixtures. Here, we present a novel approach to in situ measurements of heterogeneous two-phase behavior in binary fluid mixtures using a single apparatus. A modified microwave re-entrant cavity apparatus is employed to simultaneously measure the dielectric properties of the liquid and vapor as well as the quality of each phase, based on the frequency shifts caused by a heterogeneous fluid for three independent resonant modes. We report a so far unique mathematical framework to further characterize the thermophysical properties of each phase along tie lines, determining the compositions of the coexisting vapor and liquid phase as well as the vapor and liquid phase densities within the two-phase region based on the Clausius–Mossotti relation between phase dielectric properties, density, and molar polarizability. The framework was validated by comparison of the measured and predicted properties of a (0.35 propane + 0.65 carbon dioxide) mixture throughout the two-phase region along an isothermal pathway at T = 280 K. These proof-of-concept results demonstrate for the first time that thermophysical properties of a binary mixture with a known overall composition can be determined from experiments with a microwave cavity using a synthetic approach.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Chemnitz

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics

Reference39 articles.

1. H.-O. Pörtner, D.C. Roberts, M. Tignor, E.S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, B. Rama (eds.), Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, 2022)

2. O. Kunz, W. Wagner, J. Chem. Eng. Data 57, 3032 (2012). https://doi.org/10.1021/je300655b

3. J. Gernert, R. Span, J. Chem. Thermodyn. 93, 274 (2016). https://doi.org/10.1016/j.jct.2015.05.015

4. G.M. Kontogeorgis, R. Dohrn, I.G. Economou, J.-C. de Hemptinne, A. ten Kate, S. Kuitunen, M. Mooijer, L.F. Žilnik, V. Vesovic, Ind. Eng. Chem. Res. 60, 4987 (2021). https://doi.org/10.1021/acs.iecr.0c05356

5. K. Tanaka, Y. Higashi, R. Akasaka, Y. Kayukawa, K. Fujii, J. Chem. Eng. Data 54, 1029 (2009). https://doi.org/10.1021/je800938s

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3