Equilibrium Solubility of Sulfadiazine in (Acetonitrile + Ethanol) Mixtures: Determination, Correlation, Dissolution Thermodynamics, and Preferential Solvation

Author:

Delgado Daniel RicardoORCID,Ortiz Claudia PatriciaORCID,Martínez FlemingORCID,Jouyban AbolghasemORCID

Abstract

AbstractThe equilibrium solubility of sulfadiazine (SD, 3) in several {acetonitrile (MeCN) + ethanol (EtOH)} mixtures at nine temperatures from T/K = (278.15 K to 318.15) has been determined by following the shake flask method. SD solubility increased with temperature-arising as well as with the MeCN proportion-increasing in the mixtures. Thus, x3 increased from 7.74 × 10−5 in neat EtOH to 6.20 × 10−4 in neat MeCN at T/K = 298.15. SD solubility was adequately correlated with a second-order multivariate equation as function of both mixtures composition and temperature. Moreover, two models including the Jouyban–Acree and Jouyban–Acree–van’t Hoff models were applied to mathematical SD solubility data modeling in solvent mixtures. The accuracy of each model is investigated by the mean relative deviations (MRD%) of the back-calculated solubility. A full predictive model was provided by training the Jouyban–Acree–van’t Hoff model with only seven experimental solubility data which provided excellent predictions with the MRD% of 3.7 %. All used models show a low MRD% values (< 4.0 %) for the calculated data indicating a good correlation of SD solubility data with the given mathematical models. By means of the van’t Hoff and Gibbs equations, the apparent thermodynamic quantities relative to SD dissolution and mixing processes, namely Gibbs energies, enthalpies, and entropies, were calculated and reported. Apparent dissolution quantities of SD were positive in all cases indicating endothermic and entropy-driven behaviors. A non-linear enthalpy–entropy relationship was observed for SD in the plot of SD dissolution enthalpy vs. Gibbs energy. Observed trend exhibits negative slope in the composition from neat EtOH to the mixture of 0.05 in mass fraction of MeCN indicating entropy-driving mechanism for this SD transfer process. Moreover, variant but positive slopes were found in the composition interval of 0.05 < w1 < 1.00 indicating enthalpy-driving mechanism for these SD transfer processes. Furthermore, the preferential solvation of SD by MeCN or EtOH was analyzed by using the inverse Kirkwood–Buff integrals. Thus, SD is preferentially solvated by EtOH molecules in EtOH-rich mixtures but preferentially solvated by MeCN in MeCN-rich mixtures. In this way, this research expands the literature investigations about the solubility of SD in some non-aqueous cosolvent mixtures conformed by MeCN and other alcohols.

Funder

Universidad Cooperativa de Colombia

Tabriz University of Medical Sciences

National University of Colombia

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3