Solid–Liquid Phase Equilibrium of the n-Nonane + n-Undecane System for Low-Temperature Thermal Energy Storage

Author:

Sequeira Maria C. M.ORCID,Nikitin TimurORCID,Caetano Fernando J. P.ORCID,Diogo Hermínio P.ORCID,Fareleira João M. N. A.ORCID,Fausto RuiORCID

Abstract

AbstractThe current article presents an exploration of the solid–liquid phase diagram for a binary system comprising n-alkanes with an odd number of carbon atoms, specifically n-nonane (n-C9) and n-undecane (n-C11). This binary system exhibits promising characteristics for application as a phase change material (PCM) in low-temperature thermal energy storage (TES), due to the fusion temperatures of the individual components, thereby motivating an in-depth investigation of the solid–liquid phase diagram of their mixtures. The n-nonane (n-C9) + n-undecane (n-C11) solid–liquid phase equilibrium study herein reported includes the construction of the phase diagram using Differential Scanning Calorimetry (DSC) data, complemented with Hot–Stage Microscopy (HSM) and low-temperature Raman Spectroscopy results. From the DSC analysis, both the temperature and the enthalpy of solid–solid and solid–liquid transitions were obtained. The binary system n-C9 + n-C11 has evidenced a congruent melting solid solution at low temperatures. In particular, the blend with a molar composition xundecane = 0.10 shows to be a congruent melting solid solution with a melting point at 215.84 K and an enthalpy of fusion of 13.6 kJ·mol–1. For this reason, this system has confirmed the initial signs to be a candidate with good potential to be applied as a PCM in low-temperature TES applications. This work aims not only to contribute to gather information on the solid–liquid phase equilibrium on the system n-C9 + n-C11, which presently are not available in the literature, but especially to obtain essential and practical information on the possibility to use this system as PCM at low temperatures. The solid–liquid phase diagram of the system n-C9 + n-C11 is being published for the first time, as far as the authors are aware.

Funder

Fundação para a Ciência e a Tecnologia

Universidade Aberta

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3