Viscosity and Interfacial Tension of Binary Mixtures Consisting of an n-Alkane, Branched Alkane, Primary Alcohol, or Branched Alcohol and a Dissolved Gas Using Equilibrium Molecular Dynamics Simulations

Author:

Kankanamge Chathura J.,Lenahan Frances D.,Klein TobiasORCID,Fröba Andreas P.

Abstract

AbstractThis study aims to characterize binary mixtures consisting of a liquid with a dissolved gas by determining their dynamic viscosity and interfacial tension using equilibrium molecular dynamics (EMD) simulations in the temperature range between (298 and 573) K and for solute mole fractions up to 0.20. With the help of a systematic variation of solvent and solute molecules, the influence of their molecular characteristics, e.g., in form of size, shape, or polarity, on the thermophysical properties of the mixtures is discussed. For this, eight different alkanes and alcohols with a carbon number between 12 and 40 as solvents and seven solutes in form of hydrogen, helium, methane, water, nitrogen, carbon monoxide, or carbon dioxide are studied. Using EMD simulations, the liquid dynamic viscosity is determined in the slightly compressed liquid phase close to saturation conditions. Simulations at vapor–liquid-equilibrium (VLE) are performed to determine the interfacial tension and to calculate the solute molecules at the vapor–liquid interface. To check the applicability of the EMD simulations, data for the dynamic viscosity and interfacial tension from this work are compared to experimental data of binary mixtures with the same solutes and similar solvents. The results from this work show that the impact of the dissolved gas on the thermophysical properties is strongly depending on its molecular characteristics. For example, the properties of mixtures containing dissolved He are usually within combined uncertainties with the ones of the pure solvent. In contrast, dissolving CO2 leads to a pronounced reduction in both properties at comparable solute mole fractions. For the molecular characteristics of the solvent, the carbon chain length is shown to influence mainly the interfacial tension and the polarity mainly influences the viscosity.

Funder

Deutsche Forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3