Di-Alkyl Adipates as New Phase Change Material for Low Temperature Energy Storage

Author:

Sequeira Maria C. M.ORCID,Nogueira Bernardo A.ORCID,Caetano Fernando J. P.ORCID,Diogo Hermínio P.ORCID,Fareleira João M. N. A.ORCID,Fausto RuiORCID

Abstract

AbstractThis work is a contribution to the thermal characterization of a selected binary system of two di-n-alkyl adipates that can be used as phase change material for thermal energy storage at low temperatures. The construction of the solid–liquid phase diagram using differential scanning calorimetry (DSC), complemented with Raman Spectroscopy studies for the system composed by diethyl and dibutyl adipates is presented. The solidus and liquidus equilibrium temperatures were determined by DSC for the pure components and 30 binary mixtures at selected molar compositions were used to construct the corresponding solid–liquid phase diagram. The binary system of diethyl and dibutyl adipates presents eutectic behaviour at low temperatures. The eutectic temperature was found at 240.46 K, and the eutectic composition was determined to occur at the molar fraction xdibutyl = 0.46. Additionally, the system shows a polymorphic transition, characteristic of dibutyl adipate, occurring at ca. 238 K, confirmed by optical microscopy. To the best of our knowledge, no reference to the phase diagram of the present system could be found in the literature. Raman spectroscopy was essential to complement the construction of the phase equilibrium diagram, enabling the identification of the solid and liquid phases of the system. Finally, the liquidus curve of the phase diagram was also successfully predicted using a suitable fitting equation, being the root mean square deviation of the data from the correlation equal to 0.54 K. In addition, this fitting operation enabled a correct prediction of the eutectic composition of the system.

Funder

Fundação para a Ciência e a Tecnologia (FCT), Portugal

Universidade Aberta

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3