Abstract
Abstract
Background
Chronic Obstructive Pulmonary Disease is characterised by declining lung function and a greater oxidative stress burden due to reduced activity of antioxidant enzymes such as Glutathione Peroxidase 1.
Objectives
The extent to which drugs may contribute to this compromised activity is largely unknown. An integrative drug safety model explores inhibition of Glutathione Peroxidase 1 by drugs and their association with chronic obstructive pulmonary disease adverse drug events.
Methods
In silico molecular modelling approaches were utilised to predict the interactions that drugs have within the active site of Glutathione Peroxidase 1 in both human and bovine models. Similarities of chemical features between approved drugs and the known inhibitor tiopronin were also investigated. Subsequently the Food and Drug Administration Adverse Event System was searched to uncover adverse drug event signals associated with chronic obstructive pulmonary disease.
Results
Statistical and molecular modelling analyses confirmed that the use of several registered drugs, including acetylsalicylic acid and atenolol may be associated with inhibition of Glutathione Peroxidase 1 and chronic obstructive pulmonary disease.
Conclusion
The integration of molecular modelling and pharmacoepidemological data has the potential to advance drug safety science. Ongoing review of medication use and further pharmacoepidemiological and biological analyses are warranted to ensure appropriate use is recommended.
Graphical Abstract
Funder
University of South Australia
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Organic Chemistry,Pharmaceutical Science,Pharmacology,Molecular Medicine,Biotechnology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献