Abstract
Abstract
Purpose
This work proposes an in-silico screening method for identifying promising formulation candidates in complex lipid-based drug delivery systems (LBDDS).
Method
The approach is based on a minimum amount of experimental data for API solubilites in single excipients. Intermolecular interactions between APIs and excipients as well as between different excipients were accounted for by the Perturbed-Chain Statistical Associating Fluid Theory. The approach was applied to the in-silico screening of lipid-based formulations for ten model APIs (fenofibrate, ibuprofen, praziquantel, carbamazepine, cinnarizine, felodipine, naproxen, indomethacin, griseofulvin and glibenclamide) in mixtures of up to three out of nine excipients (tricaprylin, Capmul MCM, caprylic acid, Capryol™ 90, Lauroglycol™ FCC, Kolliphor TPGS, polyethylene glycol, carbitol and ethanol).
Results
For eight out of the ten investigated model APIs, the solubilities in the final formulations could be enhanced by up to 100 times compared to the solubility in pure tricaprylin. Fenofibrate, ibuprofen, praziquantel, carbamazepine are recommended as type I formulations, whereas cinnarizine and felodipine showed a distinctive solubility gain in type II formulations. Increased solubility was found for naproxen and indomethacin in type IIIb and type IV formulations. The solubility of griseofulvin and glibenclamide could be slightly enhanced in type IIIb formulations. The experimental validation agreed very well with the screening results.
Conclusion
The API solubility individually depends on the choice of excipients. The proposed in-silico-screening approach allows formulators to quickly determine most-appropriate types of lipid-based formulations for a given API with low experimental effort.
Graphical abstract
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Organic Chemistry,Pharmaceutical Science,Pharmacology,Molecular Medicine,Biotechnology
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献