Impact of Different Saccharides on the In-Process Stability of a Protein Drug During Evaporative Drying: From Sessile Droplet Drying to Lab-Scale Spray Drying

Author:

Dieplinger Johanna,Pinto Joana T.,Dekner Michael,Brachtl Gerald,Paudel AmritORCID

Abstract

AbstractObjectivesSolid biopharmaceutical products can circumvent lower temperature storage and transport and increase remote access with lower carbon emissions and energy consumption. Saccharides are known stabilizers in a solid protein produced via lyophilization and spray drying (SD). Thus, it is essential to understand the interactions between saccharides and proteins and the stabilization mechanism.MethodsA miniaturized single droplet drying (MD) method was developed to understand how different saccharides stabilize proteins during drying. We applied our MD to different aqueous saccharide-protein systems and transferred our findings to SD.ResultsThe poly- and oligosaccharides tend to destabilize the protein during drying. The oligosaccharide, Hydroxypropyl β-cyclodextrin (HPβCD) shows high aggregation at a high saccharide-to-protein molar ratio (S/P ratio) during MD, and the finding is supported by nanoDSF results. The polysaccharide, Dextran (DEX) leads to larger particles, whereas HPBCD leads to smaller particles. Furthermore, DEX is not able to stabilize the protein at higher S/P ratios either. In contrast, the disaccharide Trehalose Dihydrate (TD) does not increase or induce protein aggregation during the drying of the formulation. It can preserve the protein’s secondary structure during drying, already at low concentrations.ConclusionDuring the drying of S/P formulations containing the saccharides TD and DEX, the MD approach could anticipate the in-process (in) stability of protein X at laboratory-scale SD. In contrast, for the systems with HPβCD, the results obtained by SD were contradictory to MD. This underlines that depending on the drying operation, careful consideration needs to be applied to the selection of saccharides and their ratios.

Funder

Österreichische Forschungsförderungsgesellschaft

Graz University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Organic Chemistry,Pharmaceutical Science,Pharmacology,Molecular Medicine,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3